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Abstract

Learning background statistics is an essential task for sev-
eral visual surveillance applications such as incident de-
tection and traffic management. In this paper, we propose
a new method for modeling background statistics of a dy-
namic scene. Each pixel is represented with layers of Gaus-
sian distributions. Using recursive Bayesian learning, we
estimate the probability distribution of mean and covari-
ance of each Gaussian. The proposed algorithm preserves
the multimodality of the background and estimates the num-
ber of necessary layers for representing each pixel. We
compare our results with the Gaussian mixture background
model. Experiments conducted on synthetic and video data
demonstrate the superior performance of the proposed ap-
proach.

1. Introduction
Segmentation of foreground and background regions in im-
age sequences is one of the most fundamental tasks in com-
puter vision. The provided information is usually crucial
for higher level operations such as visual surveillance.

The obvious way to detect moving regions in image se-
quences is to select a reference frame while scene is station-
ary, and to subtract the observed frame from this image. The
resulting difference image is thresholded to extract the mov-
ing regions. Although this task looks like fairly simple, in
real world applications this approach rarely works. Usually
background is never static and varies by time due to several
reasons. The most important factors are lighting changes,
moving regions and camera noise. Moreover in many of the
applications, it is desirable to model the different possible
appearances of the background such as shadows.

To overcome these problems, adaptive background mod-
els became more popular. Earlier adaptive methods use sim-
ple adaptive filters to make a prediction of background pixel
intensities. In [8, 9] Kalman filtering is used to model back-
ground dynamics. Similarly Wiener filter is used in [14] to
make a linear prediction of the pixel intensity values, given
the pixel histories.

An alternative approach is to model the probability dis-
tribution of the pixel intensity. This approach ignores the

order in which observations are made and focuses on the
distribution of the pixel intensities. Usually each pixel is
modeled with a normal distribution N(µ, σ2), varying over
time. Noise is assumed to be coming from a zero mean nor-
mal distribution N(0, σ2). In [15], a single Gaussian model
is used per pixel and the parameters are updated by a simple
adaptive filter.

The mentioned models perform fine if the scene back-
ground is unimodal but usually this is not the case. Mul-
timodalities in the background is due to dynamic nature of
the scenes. Fast lighting changes, moving regions and shad-
owed regions are some of the sources of multimodalities.
To handle multimodalities the idea of using Gaussian dis-
tribution per pixel is extended by using mixture of Gaus-
sian distributions. Mixture of three Gaussians correspond-
ing to road, vehicle and shadow are defined in [3] for a traf-
fic surveillance application. Likewise, Stauffer and Grim-
son [12] uses mixture of k normal distributions. The model
parameters are updated using an online Expectation Maxi-
mization (EM) algorithm. In these models feature vectors
consists of color information of the pixel. In [5], Harville et.
al. extends the feature vector by depth information coming
from stereo cameras. In [6] and [7] gradient information is
used to achieve a more accurate background subtraction.

Although mixture of Gaussian models can converge to
any arbitrary distribution provided enough number of com-
ponents, this is not computationally possible for real time
applications. Generally three-five components are used per
pixel. Another way is to approach probability distribution
of background model by nonparametric kernel density esti-
mation [2]. The model keeps samples of intensity values
per pixel and uses these samples to estimate the density
function. Background subtraction is performed by thresh-
olding the probability of observed samples. As in the para-
metric methods, several variations of this method is pre-
sented. In [10], motion information is used to model dy-
namic scenes. Although nonparametric models seems like
a reasonable choice for background modeling, it is usually
to costly to perform in real time. Memory and computation
requirements are linear in the size of temporal window.

Other recent approaches include representing scene in
discrete states corresponding to environmental conditions
and switching among these states with the observations.
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Hidden Markov Models (HMMs) are very suitable for this
purpose. In [11], a three state HMM is used whereas in [13]
topology is learned from the observations.

In this paper, we describe a Bayesian approach to per
pixel background modeling. We model each pixel as lay-
ered normal distributions. Recursive Bayesian estima-
tion is performed to update the background parameters.
Proposed update algorithm preserves multimodality of the
background model and the embedded confidence score de-
termines the number of necessary layers for each pixel.

The paper is organized as follows. Background model
and update mechanism is explained in Section 2. In Sec-
tion 3, we compare our method with online EM algo-
rithm [12]. Foreground segmentation is explained in Sec-
tion 4.

2 Background Model

Our background model is most similar to adaptive mixture
models [12] but instead of mixture of Gaussian distribu-
tions, we define each pixel as layers of 3D multivariate
Gaussians. Each layer corresponds to a different appear-
ance of the pixel. We perform our operations on (r,g,b) color
space.

Using Bayesian approach, we are not estimating the
mean and variance of the layer, but the probability distribu-
tions of mean and variance. We can extract statistical infor-
mation regarding to these parameters from the distribution
functions. For now, we are using expectations of mean and
variance for change detection, and variance of the mean for
confidence.

Prior knowledge can be integrated to the system easily
with prior parameters. Due to computation of full covari-
ance matrix, feature space can be modified to include other
information sources, such as motion information, as dis-
cussed in [10].

Our update algorithm maintains the multimodailty of the
background model. At each update, at most one layer is
updated with the current observation. This assures the min-
imum overlap over layers. We also determine how many
layers are necessary for each pixel and use only those layers
during foreground segmentation phase. This is performed
with an embedded confidence score. Details are explained
in the following sections.

2.1 Layer Model

Data is assumed to be normally distributed with mean µ
and covariance Σ. Mean and variance are assumed to be
unknown and modeled as random variables [4, p.87-88].
Using Bayes theorem joint posterior density can be written
as:

p(µ,Σ|X) ∝ p(X|µ,Σ)p(µ,Σ). (1)

To perform recursive Bayesian estimation with the new ob-
servations, joint prior density p(µ,Σ) should have the same
form with the joint posterior density p(µ,Σ|X). Condition-
ing on the variance, joint prior density is written as:

p(µ,Σ) = p(µ|Σ)p(Σ). (2)

Above condition is realized if we assume inverse Wishart
distribution for the covariance and, conditioned on the co-
variance, multivariate normal distribution for the mean. In-
verse Wishart distribution is a multivariate generalization of
scaled inverse-χ2 distribution. The parametrization is

Σ ∼ Inv-Wishartυt−1(Λ
−1
t−1) (3)

µ|Σ ∼ N(θt−1,Σ/κt−1). (4)

where υt−1 and Λt−1 are the degrees of freedom and scale
matrix for inverse Wishart distribution, θt−1 is the prior
mean and κt−1 is the number of prior measurements. With
these assumptions joint prior density becomes

p(µ,Σ) ∝ |Σ|−((υt−1+3)/2+1)× (5)

e

(
− 1

2 tr(Λt−1Σ−1
)−κt−1

2 (µ−θt−1)
TΣ−1

(µ−θt−1)
)

for three dimensional feature space. Let
this density be labeled as normal-inverse-
Wishart(θt−1,Λt−1/κt−1; υt−1,Λt−1). Multiplying
prior density with the normal likelihood and arranging
the terms, joint posterior density becomes normal-inverse-
Wishart(θt,Λt/κt; υt,Λt) with the parameters updated:

υt = υt−1 + n κn = κt−1 + n (6)

θt = θt−1
κt−1

κt−1 + n
+ x

n

κt−1 + n
(7)

Λt = Λt−1 +
n∑

i=1

(xi − x)(xi − x)T +

n
κt−1

κt
(x − θt−1)(x − θt−1)T (8)

where x is the mean of new samples and n is the number of
samples used to update the model. If update is performed
at each time frame, n becomes one. To speed up the sys-
tem, update can be performed at regular time intervals by
storing the observed samples. During our tests, we update
one quarter of the background at each time frame, therefore
n becomes four. The new parameters combine the prior in-
formation with the observed samples. Posterior mean θt is
a weighted average of the prior mean and the sample mean.
The posterior degrees of freedom is equal to prior degrees
of freedom plus the sample size. System is started with the
following initial parameters:

κ0 = 10, υ0 = 10, θ0 = x0, Λ0 = (υ0 − 4)162I (9)
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where I is the three dimensional identity matrix.
Integrating joint posterior density with respect to Σ we

get the marginal posterior density for the mean:

p(µ|X) ∝ tυt−2(µ|θt,Λt/(κt(υt − 2))) (10)

where tυt−2 is a multivariate t-distribution with υt − 2 de-
grees of freedom.

We use the expectation of marginal posterior distribution
for mean and covariance as our model parameters at time
t. Expectation for marginal posterior mean (expectation of
multivariate t-distribution) becomes:

µt = E(µ|X) = θt (11)

whereas expectation of marginal posterior covariance (ex-
pectation of inverse Wishart distribution) becomes:

Σt = E(Σ|X) = (υt − 4)−1Λt. (12)

Our confidence measure for the layer is equal to one over
determinant of covariance of µ|X:

C =
1

|Σµ|X| =
κ3

t (υt − 2)4

(υt − 4)|Λt| . (13)

If our marginal posterior mean has larger variance, our
model becomes less confident. Note that variance of mul-
tivariate t-distribution with scale matrix Σ and degrees of
freedom υ is equal to υ

υ−2Σ for υ > 2.
System can be further speed up by making independence

assumption on color channels. Update of full covariance
matrix requires computation of nine parameters. Moreover,
during distance computation we need to invert the full co-
variance matrix. To speed up the system, we separate (r,
g, b) color channels. Instead of multivariate Gaussian for a
single layer, we use three univariate Gaussians correspond-
ing to each color channel. After updating each color chan-
nel independently we join the variances and create a diago-
nal covariance matrix:

Σt =




σ2
t,r 0 0
0 σ2

t,g 0
0 0 σ2

t,b


 . (14)

In this case, for each univariate Gaussian we assume scaled
inverse-χ2 distribution for the variance and conditioned on
the variance univariate normal distribution for the mean.
The Bayesian update equations for the parameters can be
found in [4, p.78-80].

2.2 Background Update

We initialize our system with k layers for each pixel. Usu-
ally we select three-five layers. In more dynamic scenes
more layers are required. As we observe new samples for

each pixel we update the parameters for our background
model. We start our update mechanism from the most confi-
dent layer in our model. If the observed sample is inside the
99% confidence interval of the current model, parameters
of the model are updated as explained in equations (6), (7)
and (8). Lower confidence models are not updated.

For background modeling, it is useful to have a forget-
ting mechanism so that the earlier observations have less ef-
fect on the model. Forgetting is performed by reducing the
number of prior observations parameter of unmatched mod-
els. If current sample is not inside the confidence interval
we update the number of prior measurements parameter:

κt = κt−1 − n (15)

and proceed with the update of next confident layer. We do
not let κt become less than initial value 10. If none of the
models are updated, we delete the least confident layer and
initialize a new model having current sample as the mean
and an initial variance (9). The update algorithm for a single
pixel can be summarized as follows.

Given: New sample x, background layers
{(θt−1,i,Λt−1,i, κt−1,i, υt−1,i)}i=1..k

Sort layers according to confidence measure defined
in (13). i ← 1.
while i < k

Measure Mahalanobis distance [1, p.36]:
di ← (x − µt−1,i)T Σ−1

t−1,i(x − µt−1,i).
if sample x is in 99% confidence interval

then update model parameters according to
equations (6), (7), (8) and stop.

else update model parameters according to
equation (15).

i ← i + 1
Delete layer k, initialize a new layer having parameters
defined in equation (9).

With this mechanism, we do not deform our models with
noise or foreground pixels, but easily adapt to smooth in-
tensity changes like lighting effects. Embedded confidence
score determines the number of layers to be used and pre-
vents unnecessary layers. During our tests usually sec-
ondary layers corresponds to shadowed form of the back-
ground pixel or different colors of the moving regions of
the scene. If the scene is unimodal, confidence scores of
layers other than first layer becomes very low.

3 Comparison with online EM

Although our model looks similar to [12], there are major
differences. In [12], each pixel is represented as a mixture
of Gaussian distribution and parameters of Gaussians and
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(a)

(b)

Figure 1: Mixture of 1D Gaussian data corrupted with uni-
form noise. Lines show one standard deviation interval
around the mean. Parameters are estimated with recursive
Bayesian learning and online EM [12] with five Gaussians.
Bottom line is the real parameters. Middle line shows es-
timation with recursive Bayesian learning. Topmost line
shows estimation with online EM. (a) Mixture of two Gaus-
sians. Most confident two layers estimated by two methods
are shown. (b) Mixture of four Gaussians. Most confident
four layers estimated by two methods are shown. There
are multiple Gaussians at the same place in online EM and
some modes are not detected.

mixing coefficients are updated with an online K-means ap-
proximation of EM. The approach is very sensitive to initial
observations. If the Gaussian components are improperly
initialized, every component eventually converges to the
most significant mode of the distribution. Smaller modes
nearby larger modes are never detected. We model each
pixel with multiple layers and perform recursive Bayesian
learning to estimate the probability distribution of model
parameters. We interpret each layer as independent of other
layers, giving us more flexibility.

To demonstrate the performance of the algorithm, mix-
ture of 1D Gaussian data with uniform noise is gener-

Mode1 Mode2 Mode3 Mode4 Mode5
Num. 10000 2000
Mean 0.4000 0.6000

Real Std. 0.0700 0.0500
Mean 0.3923 0.3919 0.3919 0.3919 0.4545
Std. 0.0093 0.0093 0.0093 0.0093 0.0631

EM Conf. 0.2538 0.2482 0.2481 0.2481 0.0016
Mean 0.4021 0.5906 0.8488 0.2561 0.1133
Std. 0.0572 0.0440 0.0820 0.0268 0.0670

Bayes Conf. 0.7047 0.2519 0.0214 0.0208 0.0009

Table 1: Mixture of two Gaussians.

Mode1 Mode2 Mode3 Mode4 Mode5
Num. 10000 8000 3000 2000
Mean 0.2000 0.6000 0.3000 0.8000

Real Std. 0.0150 0.0300 0.0500 0.0500
Mean 0.2033 0.2033 0.5993 0.5993 0.9382
Std. 0.0085 0.0085 0.0113 0.0113 0.0633

EM Conf. 0.3772 0.3772 0.1221 0.1221 0.0111
Mean 0.2002 0.5998 0.3026 0.8004 0.9387
Std. 0.0146 0.0277 0.0451 0.0620 0.0632

Bayes Conf. 0.3996 0.3820 0.1088 0.1087 0.0007

Table 2: Mixture of four Gaussians.

ated. First data set consists of 12000 points corrupted with
3000 uniform noise samples and second data set consists
of 23000 points corrupted with 10000 uniform noise sam-
ples. We assume that we observe the data in random order.
We treat the samples as observations coming from a single
pixel and estimate the model parameters with our approach
and online EM algorithm. One standard deviation interval
around the mean for actual and estimated parameters are
plot on the histogram, in Figure 1. Results show that, in
online EM, usually multimodality is lost and models con-
verge to the most significant modes. With our method, mul-
timodality of the distribution is maintained. Another im-
portant observation is, estimated variance with online EM
algorithm is always much smaller than the actual variance.
This is not surprising because the update is proportional to
the likelihood of the sample, so samples closer to the mean
become more important.

Normalized confidence scores are shown in the bottom
rows of each method in Table 1 and 2. Our confidence
score is very effective in determining the number of neces-
sary layers for each pixel. Although we estimate the model
parameters with five layers, it is clear from our confidence
scores that how many layers are effective. There is a big
gap between significant and insignificant layers.

Real data results are presented in Figure 2 and 3 where
the first sequence is a traffic sequence with heavy shadows
and the second sequence is a dynamic outdoor scene. In the
first sequence, first and second layers of our background
corresponds to the original and shadowed version of the
background. The locations where most of the cars move
have higher variances, so usually they are less confident.
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(a)

(b) (c)

Figure 2: Traffic video with heavy shadows. (a) Origi-
nal sequence. (b) Most confident two layers with recursive
Bayesian learning. (c) Most confident two layers with on-
line EM. With recursive Bayesian learning, we are able to
model the shadows as the second layer of the scene whereas
in EM first and second layers converge to most significant
mode.

Those pixels are shown in red. First and second layers con-
verged to the most significant mode in online EM algorithm.

In the second sequence, most significant three layers esti-
mated by two algorithms are shown. As seen in original im-
ages, the sky and the trees are changing appearance by time.
Our background model successfully modeled the different
appearances of these regions. The appearance of grass does
not change much with time. As expected, confidence score
of second and third layers of our background are very low
for this region.

4 Foreground Segmentation

Learned background statistics is used to detect the changed
regions of the scene. Number of layers required to represent
a pixel is not known beforehand so background is initial-
ized with more layers than needed. As seen in Table 1, we
learn background with five layers, whereas there are actu-
ally two modes. Using the confidence scores we determine
how many layers are significant for each pixel. We order

(a)

(b) (c)

Figure 3: Outdoor video. (a) Samples from original se-
quence. (b) First three layers of recursive Bayesian learn-
ing. Different appearances of the background is captured
with first three layers. Red pixels are unconfident layers.
(c) First three layers of online EM. Second and third layers
are almost same with first layer.

the layers according to confidence score (13) and select the
layers having confidence value greater than the layer thresh-
old Tc. We refer to these layers as confident layers. Note
that, Tc is dependent on the covariance of mean of the pixel
so it is dependent on color range of the pixel. We perform
our operations in 0-255 color range and select Tc=1.0. For
different color ranges Tc should be modified.

We measure the Mahalanobis distance of observed color
from the confident layers. Pixels that are outside of 99%
confidence interval of all confident layers of the background
are considered as foreground pixels.

In Figure 4, we present foreground segmentation results
of a dynamic scene. As seen in Figure 4a, appearance of
background is changing with time. After some time period,
our background algorithm learns the difference appearances
of the background. Although the method is very sensitive
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(a) (b)

Figure 4: Foreground segmentation of a dynamic scene. (a)
Original sequence. (b) Detected foreground pixels.

to foreground objects, it does not give false alarms in back-
ground changes (Figure 4b).

5. Conclusions
Adaptive mixture models and nonparametric models are
two popular methods for background modeling. Both meth-
ods have serious shortcomings. Adaptive mixture models
have problems in representing multimodal scenes, whereas
nonparametric methods are both memory and computation-
ally inefficient. We have introduced a computationally ef-
ficient method for modeling background using recursive
Bayesian learning approach. Our background model is very
effective in estimating model parameters and representing
multimodal scenes. The processing time of one frame is
0.02 seconds on a 320x240 colored video on a Pentium IV
2.4Ghz processor with five layers per background pixel. Al-
though, this study is part of a tracking application, due to
page limitation the second part is removed.
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